classical mds python

from __future__ import division
 
import numpy as np
 
def cmdscale(D):
    """                                                                                       
    Classical multidimensional scaling (MDS)                                                  
                                                                                               
    Parameters                                                                                
    ----------                                                                                
    D : (n, n) array                                                                          
        Symmetric distance matrix.                                                            
                                                                                               
    Returns                                                                                   
    -------                                                                                   
    Y : (n, p) array                                                                          
        Configuration matrix. Each column represents a dimension. Only the                    
        p dimensions corresponding to positive eigenvalues of B are returned.                 
        Note that each dimension is only determined up to an overall sign,                    
        corresponding to a reflection.                                                        
                                                                                               
    e : (n,) array                                                                            
        Eigenvalues of B.                                                                     
                                                                                               
    """
    # Number of points                                                                        
    n = len(D)
 
    # Centering matrix                                                                        
    H = np.eye(n) - np.ones((n, n))/n
 
    # YY^T                                                                                    
    B = -H.dot(D**2).dot(H)/2
 
    # Diagonalize                                                                             
    evals, evecs = np.linalg.eigh(B)
 
    # Sort by eigenvalue in descending order                                                  
    idx   = np.argsort(evals)[::-1]
    evals = evals[idx]
    evecs = evecs[:,idx]
 
    # Compute the coordinates using positive-eigenvalued components only                      
    w, = np.where(evals > 0)
    L  = np.diag(np.sqrt(evals[w]))
    V  = evecs[:,w]
    Y  = V.dot(L)
 
    return Y, evals

Are there any code examples left?
Made with love
This website uses cookies to make IQCode work for you. By using this site, you agree to our cookie policy

Welcome Back!

Sign up to unlock all of IQCode features:
  • Test your skills and track progress
  • Engage in comprehensive interactive courses
  • Commit to daily skill-enhancing challenges
  • Solve practical, real-world issues
  • Share your insights and learnings
Create an account
Sign in
Recover lost password
Or log in with

Create a Free Account

Sign up to unlock all of IQCode features:
  • Test your skills and track progress
  • Engage in comprehensive interactive courses
  • Commit to daily skill-enhancing challenges
  • Solve practical, real-world issues
  • Share your insights and learnings
Create an account
Sign up
Or sign up with
By signing up, you agree to the Terms and Conditions and Privacy Policy. You also agree to receive product-related marketing emails from IQCode, which you can unsubscribe from at any time.
Creating a new code example
Code snippet title
Source